Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments
نویسندگان
چکیده
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.
منابع مشابه
Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling
The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found t...
متن کاملDynamics and interaction of interleukin-4 receptor subunits in living cells.
It has long been established that dimerization of Interleukin-4 receptor (IL-4R) subunits is a pivotal step for JAK/STAT signal transduction. However, ligand-induced complex formation at the surface of living cells has been challenging to observe. Here we report an experimental assay employing trisNTA dyes for orthogonal, external labeling of eGFP-tagged receptor constructs that allows the quan...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملRole for lipid rafts in regulating interleukin-2 receptor signaling.
Lipid rafts are plasma membrane microdomains characterized by a unique lipid environment enriched in gangliosides and cholesterol, leading to their insolubility in nonionic detergents. Many receptors are constitutively or inducibly localized in lipid rafts, which have been shown to function as platforms coordinating the induction of signaling pathways. In this report, the first evidence is prov...
متن کاملParallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrate clone 15.
The recently discovered localization of epidermal growth factor receptor pathway substrate clone 15 (Eps15) to plasma membrane clathrin-coated pits and its constitutive association with the endocytic clathrin adaptor protein complex, AP-2, strongly suggest that Eps15 has an important role in the pathway of clathrin-dependent endocytic traffic. We report here that Eps15 forms dimers and tetramer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017